If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-45x=0
a = 49; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·49·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*49}=\frac{0}{98} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*49}=\frac{90}{98} =45/49 $
| -4/32+a=9/32 | | 2(x-5)-7=-3(-2x+9)-8x | | 9n-4+1n=16 | | 2u−1=7 | | 14x-17x=49 | | 140=5x+6(3x-15) | | 16(x+1)-6=(x+1) | | 2x/3+x/6=3x-10 | | 7+66=33x+16 | | 14x-7x=49x | | 12v-9v=24 | | 3x+5=-4x+5 | | 3x+7=-13-7 | | 2+3x=50-x | | 7(7+4x)=217 | | 3x+23=12-76 | | 120/12=x | | 7(2x+8)=112 | | .4(h-5)=(.8)h+6 | | 2x+13-7=4x+8x+2 | | 5r-4=10 | | 18/k=2,k=9 | | 5(x+2)=2x-14 | | -20=11n | | .8(h+5)=(.8)h+6 | | (.8)(h+5)=(.8)h+6 | | 6=4+4b-2 | | -19x-11=-182 | | 0.02+0.18(x+9000)=3220 | | a-5=(.1)a+4 | | 5k+10=21 | | a-5=(.1)a=4 |